
Why scan for more than fixity?

A story of reciprocal assurance.

Eric Lopatin, Digital Preservation Service Manager
University of California, California Digital Library

Library of Congress Designing Storage Architectures Meeting, 2023

CDL is a centralized resource for the ten University of California

campuses. More specifically, our service is part of the UC Curation Center

where we facilitate projects that focus on digital preservation, persistent

identifiers, research data management and data management plans.

My presentation today is titled, “Why scan for more than fixity? A story of

reciprocal assurance.”

At a basic level, an integral part of any preservation system is its ability to

track, via a core component or service, the existence of the containers

and files that comprise the digital objects it is preserving. Our repository

at the CDL, a.k.a. Merritt, uses this strategy, like so many others. But

although the system records entries in its core inventory database as a

final part of the ingest process, another, less often considered but

equally important characteristic of our preservation strategy is an

ability to reconstitute a record in that database based on extant cloud

content; hence the reciprocal assurance.

To this end, the team administering the system must be confident in its

ability to correctly store and replicate objects across multiple cloud

storage nodes. As streamlined as these processes are, nothing is perfect.

It's unreasonable to expect the repository to have been a perfectly

performing system over the course of the past 10 years, or to be one in

the years to come. As we all know, change is the only constant and it’s a

big reason behind why we're here.

There are so many variables in our systems that entail change, from API

updates, to an ever increasing number of cloud-based service offerings,

to changes in information security policies, compute and storage costs,

development roadmaps, let alone alone the institutional policies and

practices that our preservation efforts are rooted in.

Image credit: https://archive.org/details/SubjectToChangeLogo_201608

https://archive.org/details/SubjectToChangeLogo_201608

| md5 | a513a8240d7c47b09c47e42d46ea5355 | 39629232 |

 <object id="ark:/28722/k21n7z35g">
 <current>2</current>
 <fileCount>28</fileCount>
 <totalSize>164551</totalSize>
 <actualCount>17</actualCount>
 <actualSize>94024</actualSize>
 <versionCount>2</versionCount>
 <lastAddVersion>2013-10-22T03:54:57-07:00</lastAddVersion>
 </object>

<versions>

 <version id="1">
 <manifest count="14" size="82276" created="2013-10-22T01:23:26-07:00">

 <file id="system/mrt-dc.xml">
 <digestType>SHA-256</digestType>
 <digest>f40dd72e54b7e93c389895de1c1…</digest>
 <size>149</size>
 <creationDate>2013-10-22T01:14:53-07:00</creationDate>
 <mimeType>application/xml</mimeType>
 <key>ark:/28722/k21n7z35g|1|system/mrt-dc.xml</key>
 </file>

But let's focus on storage. In the face of change, we need a way to

dependably scan for content on every type of cloud storage our system

uses to ensure what we think is in the cloud, according to our database, is

actually there, and vice versa.

We must scan not only for fixity purposes, but for elements such as

persistent identifier verification, version verification, object manifest

integrity and system file integrity among others. In other words, what is

the expected state of any file in the system, and in the cloud?

Only by knowing this can we be sure that, in the off chance our database

undergoes a catastrophic failure, we'll be able to rebuild it and hold onto

all the valuable information it houses. In a way, you could say we are

interested in determining "collection health," but for much more than

any one reason.

Image credit: Bear Photo Co., 1906, California State Library:

https://calisphere.org/item/ark:/13030/hb7d5nb5vx/

https://calisphere.org/item/ark:/13030/hb7d5nb5vx/

a513a8240d7c47b09c47e42d46ea5355

It's for these reasons in particular, for the health of the content, its

stewarding system and as a form of curation that our team implemented

a cloud scan process. And for better or worse, we discovered a significant

number of inconsistencies that had built up over the years. Which is also

why we would highly recommend this practice to our colleagues in the

community.

What were some of those inconsistencies? Let’s review how the scanner

works and I’ll mention them as we go.

How does it work?

The scanner assigns a narrow set of statuses to everything it scans.

● It begins with a default state assigned to the object key it reads from a bucket.

● If it successfully identifies the same key in our database, with the same

associated properties (node, identifier) it moves on and asks for the next key via

the S3, or an S3 compatible API.

Here we experienced a limitation of the S3-compatible API layer that sits

atop Qumulo storage: requesting the next key took hours in a bucket with

millions of files. Not so with S3 and Wasabi, which responded almost

immediately. For Qumulo, we must instead request a bucket inventory

file to iterate over from the data center.

non-ark

definition

The persistent identifier does not conform to expected an Archival Resource Key
convention, ark:

○ non-ark: The S3 key does not begin with “ark:”

■ The persistent identifier for the key does not conform

to an expected Archival Resource Key (ARK)

convention (ark:)

■ Can occur when when experimenting with a

new S3 command from the command line.

■ Very few of these in production, but many in

stage and development environments.

missing-ark

definition

There is an ARK in front of the key, but the ARK is not in the database.

○ missing-ark: There is an ark in front of the key, but the ark is

not in the database.

■ A storage node health check (run every 15 minutes)

was leaving files behind with keys that did not

conform to our identifier expectations.

e.g. ark:/99999/test.manifest

orphan-copy

definition

A case of content being present on a node where the database says it shouldn't be.

○ orphan-copy: A case of content being present on a node

where the database says it shouldn't be.

■ Generally files or objects left over from a migration

from one storage node to another, or from an

incomplete object deletion.

missing-file

definition

The ARK matches an existing object in a storage node, but the key for a specific file in

the object is not in the database.

An object in the cloud contains files from an additional version*, but

entries for these files are not present in the database. In other words, a

part of the ingest process stalled: the system wrote content to the cloud,

but associated entries were not recorded in the database (half-completed

object version). This can be caused by our own ingest process via the

system’s UI, or by submissions from automated, upstream services that

may have been unsuccessful and occurred with ineffective error

reporting. These were the most difficult to analyze, resulting in a need to

contact depositors and other systems administrators.

* “Version clobber”: HA ingest: Two storage hosts would pick the same

item off the queue to work with, meaning a version of the object would

be created twice.

Keys deleted over time
Jan. 2022 May 2022 Oct. 2022 Jan. 2023

AWS S3 Primary
25,831,597

33,177 23 47 33

Qumulo Primary
54,408,010

2,711 1,347 23 10

Wasabi Secondary
52,495,892

28,888 0 6 0

AWS Glacier
Secondary
26,664,351

85,058 0 231 0

Here you can see the number of overall keys to scan as of last week,

along with counts deleted after the initial and subsequent scans. With

added safeguards and fixes now in place, our most recent scan resulted in

only a few items to review.

In conclusion, the very activities that are common to so many digital

preservation repositories – migration to new storage services, upstream

submissions, object replication and object versioning – are possible

triggers for the issues that were uncovered. In this sense, we feel it's

important to not only have robust processes that execute these activities,

but to have an equally robust method for monitoring their results in the

cloud.

Our scan is run every four months, at which point the team gathers and

reviews flagged items.

For us, not only has it been a means to improve the overall health of

content in the repository, but it’s proven to be a repeatable mechanism

that helps better our work as content stewards, and one that we feel will

continue to do so regardless of how we decide to innovate in the future.

Questions? Comments?

Eric Lopatin

eric dot lopatin at ucop dot edu

github.com/elopatin-uc3

Digital Preservation Services Manager

University of California Curation Center (UC3)

California Digital Library

https://github.com/elopatin-uc3

